Three.js es una librería de javascript para 3D.

Para mostrar lo simple que es usarla, un ejemplo del problema de los n cuerpos ( nbody problem ). Donde la interacción de las partículas está determinada principalmente por sus distancias, masas y una constante gravitacional.

El script que determina las posiciones en base a la velocidad, aceleración y fuerzas involucradas:

container = document.getElementById('container');

scene = new THREE.Scene();

camera = new THREE.PerspectiveCamera(45, window.innerWidth /
        window.innerHeight, 1, 10000);
camera.position.z = 500;
scene.add(camera);

renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);

pointlight = new THREE.PointLight(0xffffff);
ambientlight = new THREE.AmbientLight(0x101010);

directlight = new THREE.DirectionalLight(0xffffff, 1);
directlight.position.set(1, 1, 0).normalize();

scene.add(ambientlight);
scene.add(pointlight);
scene.add(directlight);

sgeometry = new THREE.SphereGeometry(3,16,16);
smaterial = new THREE.MeshPhongMaterial({color: 0x0000ff});

// algunas constantes
var spheres = new Array();
var n = 10 ;
var g = 6.670*0.01;
var m = 0.5;

// posiciones iniciales
for (var i = 0; i < n ; i += 1) {
    spheres[i] = new THREE.Mesh(sgeometry, smaterial);
    scene.add(spheres[i]);
    spheres[i].position.x += -50 + Math.random()*100;
    spheres[i].position.y += -50 + Math.random()*100;
    spheres[i].velocity = new THREE.Vector3(0,0,0);
    spheres[i].m = m;
}

container.appendChild(renderer.domElement);
var fx, fy, fz, dx, dy, dz, d2, d, f, ax, ay, az;
function render() {
    requestAnimationFrame(render);
    // fuerzas
    for (var i = 0; i < spheres.length; i += 1) {
        fx = 0;
        fy = 0;
        fz = 0;
        for (var j = 0; j < spheres.length; j += 1) {
            if (i != j ) {
                dx = spheres[i].position.x - spheres[j].position.x;
                dy = spheres[i].position.y - spheres[j].position.y;
                dz = spheres[i].position.z - spheres[j].position.z;
                d2 = dx*dx + dy*dy + dz*dz;
                d2 = d2 + 1;
                d = Math.sqrt(d2);
                f = -1 * g * spheres[i].m * spheres[j].m / d2;
                fx += f * dx/d;
                fy += f * dy/d;
                fz += f * dz/d;
            }
        }
        ax = fx / m;
        ay = fy / m;
        az = fz / m;
        spheres[i].velocity.x +=  ax;
        spheres[i].velocity.y +=  ay;
        spheres[i].velocity.z +=  az;
        spheres[i].position.x += spheres[i].velocity.x;
        spheres[i].position.y += spheres[i].velocity.y;
        spheres[i].position.z += spheres[i].velocity.z;
    }
    renderer.render(scene, camera);
}
render();

Referencias